FUNCIÓN DE ONDA DE SCHRÖDINGER
Los descubrimientos de principios del Siglo XX habían culminado con la sorprendente conclusión, por parte de Louis de Broglie, de que la materia se comporta a la vez como cuerpo y como onda, y esto es especialmente decisivo cuando nos referimos a partículas subatómicas. Esta doble condición de las partículas tenía que ser utilizada para profundizar en el estudio del mundo de lo muy pequeño.
Así las cosas, Schrödinger, entre los años 1925 y 1926, introdujo la función de onda, también llamada ecuación de Schrödinger, que no es otra cosa que una ecuación que describe la forma en que una partícula cambia con el paso del tiempo. Por tanto, se trata de estudiar las partículas del mismo modo en que se estudian las demás ondas que sentimos a nuestro alrededor, como las sonoras o las producidas en el agua cuando se lanza una piedra a un charco.
Típica onda sobre el agua
Cualquier tipo de onda queda descrita en cualquier instante mediante una lista de números, un número por cada punto del espacio por el que viaja la onda. Por ejemplo, en el caso de la onda sonora, lo números nos darán la presión del aire en cada punto del espacio (porque es el aire quien transmite el sonido). Otro caso cotidiano es la onda que produce un músico sobre la cuerda de una guitarra cuando la hace sonar, la cual estaría descrita por números que nos darían la tensión de dicha cuerda en cada uno de sus puntos.
Y del mismo modo, la función de onda de las partículas nos da números concernientes a estas partículas. La peculiaridad de estos números es que son probabilidades, es decir, el valor de la función de onda en cualquier punto nos da la probabilidad de que la partícula se halle en ese punto.
Esquema de una función de onda
monoelectrónica u orbital en dos
dimensiones.
monoelectrónica u orbital en dos
dimensiones.
_____________________________
Formula:
En 1923 De Broglie propuso la llamada hipótesis de De Broglie por la que a cualquier partícula podía asignársele un paquete de ondas materiales o superposición de ondas de frecuencia y longitud de onda asociada con el momento lineal y la energía:
donde son el momento lineal y la energía cinética de la partícula, y son el vector número de onda y la frecuencia angular. Cuando se consideran partículas macroscópicas muy localizadas el paquete de ondas se restringe casi por completo a la región del espacio ocupada por la partícula y, en ese caso, la velocidad de movimiento de la partícula no coincide con la velocidad de fase de la onda sino con la velocidad de grupo del paquete:
donde Ek(p) = P2 / 2m. Si en lugar de las expresiones clásicas del momento lineal y la energía se usan las expresiones relativistas, lo cual da una descripción más precisa para partículas rápidas, un cálculo algo más largo, basado en la velocidad de grupo, lleva a la misma conclusión.
La fórmula de De Broglie encontró confirmación experimental en 1927 un experimento que probó que la ley de Bragg, inicialmente formulada para rayos X y radiación de alta frecuencia, era también válida para electrones lentos si se usaba como longitud de onda la longitud postulada por De Broglie. Esos hechos llevaron a los físicos a tratar de formular una ecuación de ondas cuántica que en el límite clásico macroscópico se redujera a las ecuaciones de movimiento clásicas o leyes de Newton. Dicha ecuación ondulatoria había sido formulada por Erwin Schrödinger en 1925 y es la celebrada Ecuación de Schrödinger:
donde se interpretó originalmente como un campo físico o campo de materia que por razones históricas se llamó función de onda y fue el precedente histórico del moderno concepto de función de onda.
El concepto actual de función de onda es algo más abstracto y se basa en la interpretación del campo de materia no como campo físico existente sino como amplitud de probabilidad de presencia de materia. Esta interpretación, introducida por Max Born, le valió la concesión del premio Nobel de física en 1954.
______________________________________________
Formulación moderna de Von Neumann
La formalización rigurosa de la función de onda requiere considerar espacios de Hilbert equipados, donde puedan construirse bases más generales. Así para cualquier operador autoadjunto, al teorema de descomposición espectral, permite construir el equivalente de una base vectorial dependiente de un índice continuo (infinito, incontable). Por ejemplo, si se considera el operador de posición , que es autoadjunto sobre un dominio denso en el espacio de Hilbert convencional , entonces se pueden construir estados especiales:
Pertenecientes a un espacio equipado de Hilbert , tal que la función de onda puede ser interpretada como las "componentes" del vector de estado del sistema respecto a una base incontable formada por dichos vectores:
Nótese que aunque los estados propios del operador posición no son normalizables, ya que en general no pertenecen al espacio de Hilbert convencional del sistema (sino sólo al espacio equipado), el conjunto de funciones de onda sí definen estados en el espacio de Hilbert. Eso sucede porque los estados propios satisfacen:
Puesto que las funciones de onda así definidas, que son de cuadrado integrable, sí forman un espacio de Hilbert isomorfo y homeomorfo al original, el cuadrado del módulo de la función de onda puede ser interpretado como la densidad de probabilidad de presencia de las partículas en una determinada región del espacio.
Un tratamiento análogo al anterior usando vectores propios del operador momento lineal también pertenecientes a un espacio equipado de Hilbert permiten definir las "funciones de onda" sobre el espacio de momentos. El conjunto de estos estados cuánticos propios del operador momento son llamados en física "base de espacio-k" (en contraposición a la función de onda obtenida a partir del operador posición que se llama "base de espacio-r"). Por la relación de conmutación entre los Operador (mecánica cuántica)operadores posición y momento, las funciones de onda en espacio-r y en espacio-k son pares de transformadas de Fourier.
El nombre espacio-k proviene de que , mientras que el nombre espacio-r proviene del hecho de que las coordenadas espaciales con frecuencia se designan mediante el vector
No hay comentarios:
Publicar un comentario